Numerical simulation of wave propagation and plasma response excited in field-reversed configuration plasma

Author:

Urano Takahiro,Takahashi Toshiki,Asai TomohikoORCID,Okada Shigefumi

Abstract

Abstract A hybrid simulation (a model that treats ions as particles and electrons as fluid) is performed to analyse the propagation of waves excited in the field-reversed configuration plasma and the resulting plasma response. The current of the wave excitation antenna changes in a sine wave, and its frequency is set so that it has an ion cyclotron resonance point inside the separatrix. When the antenna current is maximum, a magnetic field with a magnitude of 40% of the external magnetic field is created on the separatrix. A toroidal magnetic field is excited in the plasma by applying waves. The observed propagation velocity of the toroidal magnetic field is comparable with the shear Alfvén wave outside the separatrix, and is on the same order within the separatrix. This result has a tendency similar to the propagation velocity outside the separatrix reported in the wave experiment in the past FIX machine. The simulation results also show that when the excited magnetic field propagates in the axial direction, the separatrix is compressed or expanded, and the high-density region of the ions formed thereby moves in the axial direction. In addition, the excited magnetic energy is rapidly decreased near the position where the velocities of the shear Alfvén wave and the ion sound wave are equal (local beta value is 0.88). It is found that the decay of the excited magnetic energy occurred at a point outside the ion cyclotron resonance point. This suggests that the compression and expansion of the plasma is caused while maintaining the quasi-equilibrium state according to the change in the external magnetic pressure.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3