Effect of parallel flow on resonant layer responses in high beta plasmas

Author:

Lee YeongsunORCID,Park Jong-KyuORCID,Na Yong-SuORCID

Abstract

Abstract Resonant layers in a tokamak respond to non-axisymmetric magnetic perturbations by amplifying the mode amplitude and balancing the plasma rotation through magnetic reconnection and force balance, respectively. This resonant response can be characterized by local layer parameters and especially by a single quantity in the linear regime, the so-called inner-layer Δ. The computation of Δ under two-fluid drift-MHD formalism has been progressed by reducing the order of the system in the phase space, where the shielding current is approximated as being only carried by electrons, a posteriori. In this study, we relax the approximation and compute Δ accounted for by the parallel flow associated with the ion shielding current. The posteriori is numerically verified in great agreement with the original SLAYER developed in a previous paper (J.-K. Park 2022 Phys. Plasmas 29 072506). Extending the resonant layer response theory to high β plasmas, our research findings answer two important questions: how the parallel flow influences the resonant layer response and why the parallel flow effect appears in high β plasmas. The complicated plasma compression in high β regime allows the parallel flow response to give rise to the ion shielding current, which not only shifts the zero-crossing condition of the ExB flow but also enhances the field penetration threshold. Technically, the Riccati matrix transformation method is adapted to handle the numerical stiffness due to the increased order of the system. The high fidelity of this numerical method makes use of further extension of the model to higher-order systems to take other physical phenomena into account. This work is envisaged to predict the resonant layer response under high β fusion reactor conditions.

Funder

Princeton Plasma Physics Laboratory

National Research Foundation of Korea

Ministry of Science and ICT, South Korea

Publisher

IOP Publishing

Reference64 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3