Sputtering of the beryllium tungsten alloy Be2W by deuterium atoms: molecular dynamics simulations using machine learned forces

Author:

Chen L.ORCID,Kaiser A.ORCID,Probst M.ORCID,Shermukhamedov S.

Abstract

Abstract Material erosion and fuel retention will limit the life and the performance of thermonuclear fusion reactors. In this work, sputtering, reflection and retention processes are atomistically modeled by simulating the non-cumulative sputtering by deuterium projectiles on a beryllium–tungsten alloy surface. The forces for the molecular dynamics trajectories were machine learned from density functional theory with a neural network architecture. Our data confirms and supplements previous results for simulated sputtering rates. In the non-cumulative scenario we simulate, we did not observe reaction mechanisms leading to swift chemical sputtering. Thus, our sputtering rates at low impact energies are smaller than in comparable non-cumulative studies. The sputtering yields of the Be2W alloy are generally lower than those of pure beryllium. We found a strong dependence of the sputtering yield on the incident angle with an increase by about a factor of 3 for larger incident angles at 100 eV impact energy. In the pristine surface, a large majority of the impacting hydrogen projectiles at perpendicular impact remains in the surface.

Funder

Horizon 2020 Marie Skłodowska-Curie No

Tyrolean Science Fund

Kommission zur Koordination der Kernfusionsforschung der ÖAW

H2020 Euratom

Austrian Science Fund

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 2022 Review of Data-Driven Plasma Science;IEEE Transactions on Plasma Science;2023-07

2. Effect of mechanical−chemical modification on adsorption of beryllium by calcite;Environmental Science and Pollution Research;2023-05-04

3. Theory and molecular simulations of plasma sputtering, transport and deposition processes;The European Physical Journal D;2023-02

4. Modelling the impact of argon atoms on a tungsten surface;The European Physical Journal D;2022-09

5. Effect of 14.7 MeV Protons on Beryllium Micro Brush / Copper ITER First Wall using SRIM;Journal of Physics: Conference Series;2022-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3