Machine learning-based real-time kinetic profile reconstruction in DIII-D

Author:

Shousha RicardoORCID,Seo JaeminORCID,Erickson Keith,Xing ZichuanORCID,Kim SangKyeunORCID,Abbate JosephORCID,Kolemen EgemenORCID

Abstract

Abstract Kinetic equilibrium reconstruction plays a vital role in the physical analysis of plasma stability and control in fusion tokamaks. However, the traditional approach is subjective and prone to human biases. To address this, the consistent automatic kinetic equilibrium reconstruction (CAKE) method was introduced, providing objective results. Nonetheless, its offline nature limits its application in real-time plasma control systems (PCSs). To address this limitation, we present RTCAKENN, a machine learning model that approximates 7 CAKE-level output profiles, namely pressure, inverse q, toroidal current density, electron temperature and density, carbon ion impurity temperature and rotation profiles, using real-time available inputs. The deep neural network consists of an encoder layer, where the scalars and interdependent inputs such as plasma boundary coordinates and motional Stark effect data are encoded using multi-layer perceptrons (MLPs), while profile inputs are encoded by 1D convolutional layers. The encoded data is passed through a MLP for latent feature extraction, before being decoded in the decoding layers, which consist of upsampling and convolutional layers. RTCAKENN has been implemented in the DIII-D PCS and our model achieves accuracy comparable to CAKE and surpasses existing real-time alternatives. Through clever dropout training, RTCAKENN exhibits robustness and can operate even in the absence of Thomson scattering data or charge exchange recombination data. It executes in under 8 ms in the real-time environment, enabling future application in real-time control and analysis.

Funder

Fusion Energy Sciences

National Research Foundation of Korea

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3