Modeling of the effects of impurity seeding on plasma detachment and impurity screening of snowflake divertor on HL-2M tokamak by SOLPS-ITER

Author:

Zhang Yanjie,Sang ChaofengORCID,Li Jiaxian,Zheng Guoyao,Senichenkov Ilya Y.ORCID,Rozhansky Vladimir A.,Zhang Chen,Wang YilinORCID,Zhao Xuele,Wang DezhenORCID

Abstract

Abstract To address the issues of mitigation and control of the heat loads on the divertor target, a snowflake divertor (SFD) has been proposed on the HL-2M tokamak. In this work, simulations have been performed by using SOLPS-ITER to demonstrate the advantages of SFD on HL-2M on plasma detachment and impurity screening during impurity seeding. Firstly, neon (Ne) and argon (Ar) seeding are chosen for comparison in SFD. It is found that Ar seeding significantly mitigates the in-out asymmetry compared with Ne seeding, mainly in high seeding rate cases. The impurity screening capabilities with Ar seeding are conspicuously better than that of Ne seeding. Subsequently, the SFD and standard divertor (SD) with Ar seeding are compared. The SFD achieves plasma detachment with a seeding rate of more than one order of magnitude lower and has better impurity screening capability than those of the SD. This can be explained by more substantial Ar accumulation in the private flux region near the X-point in SD. Moreover, the simulation shows that D2 puffing near the OMP can drive more Ar ions to the divertor and promote the plasma detachment and impurity screening. Finally, the effects of E × B drift on SFD are studied. It is found that with E × B drift more Ar particles accumulate in the vicinity of both inner and outer targets, especially in the far-SOL region, thus raising the far-SOL power radiation. However, the peak heat flux is mainly located near the separatrix, therefore a higher seeding rate is required to achieve detachment. Moreover, the E × B drift drives more Ar particles away from the core region. In addition, the role of molecules on the plasma momentum loss during detachment is analyzed.

Funder

National Key R&D Program of China

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Russian Foundation for Basic Research

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3