Modeling of thermal-ion-driven internal kink in DIII-D high-T i plasmas

Author:

Liu YueqiangORCID,Xie WeichaoORCID,Du XiaodiORCID

Abstract

Abstract Toroidal modeling utilizing the non-perturbative magnetohydrodynamic-kinetic hybrid code MARS-K (Liu Y.Q. et al 2008 Phys. Plasmas 15 112503), to a DIII-D high-performance discharge with the core thermal ion temperature of T i ∼ 13 keV, finds multiple branches of unstable internal kink (IK) modes triggered by the bounce resonance of trapped thermal ions. The range of the computed mode frequency aligns well with the bounce frequency of trapped thermal ions, confirming the nature of resonance drive for the instability. The computed mode frequency is close to that observed in experiments. Plasma toroidal flow, in particular the fast flow ( $?> > 10% of Alfvén speed) as in the considered DIII-D discharge, strongly stabilizes the fluid IK branch but not all of the thermal-ion-driven internal kink (TIK) branches, leaving one dominant unstable TIK branch under the experimental conditions. Plasma resistivity also significantly affects stability of the TIKs (but not much on the IK which is ideally strongly unstable) in combination with the drift kinetic drive by thermal ions. High resistivity can drive additional unstable TIK branches. Scanning the on-axis safety factor over a large range confirms robustness of the TIK triggering by thermal ions. The computed TIKs contain both the IK and the tearing components as the dominant contributions to the eigenmode structure. These findings, together with the experimental results reported in reference (Du X.D. et al 2021 Phys. Rev. Lett. 127 025001), strongly suggest the possibility of thermal-ion driven instabilities in ITER.

Funder

US Department of Energy

National Key R&D Program of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3