Particle pump-out induced by trapped electron mode turbulence in electron cyclotron heated plasmas on XuanLong-50 spherical torus

Author:

Wang MingyuanORCID,Li JiaORCID,Bai Yukun,Dong Jiaqi,Shi Yuejiang,Zou Xiaolan,Liu AdiORCID,Zhuang Ge,Li Hongyue,Li Songjian,Song Shaodong,Sun Tiantian,Liu Bing,Song Xianming,Liu Minsheng,Yuan Baoshan,Martin Peng Y.-K.

Abstract

Abstract Particle pump-out effects induced by low-frequency (<200 kHz) density fluctuations were observed in solely electron cyclotron wave (ECW)-heated plasmas on the spherical torus XuanLong-50 (EXL-50) without a central solenoid. The intensity of the relative density fluctuations increases with increasing ECW power and decays when the ECW is turned off while sustaining the plasma current. The electron densities are maintained relatively high and steady when the density fluctuations are completely absent, indicating that the outward transport of electrons is dominated by the particle pump-out effect of the ECW. The density fluctuations are modulated by a supersonic molecular beam injection pulse and the modulation amplitude decreases with increasing electron density at the same ECW injection power and decreasing ECW power at the same electron density, respectively. Analysis revealed that a critical value of electron temperature gradient (ETG) triggers the density fluctuations, and the intensity of the relative density fluctuations is positively correlated with the ETG and approximately inversely proportional to the effective collision frequency. With plasma parameters similar to those of EXL-50 experiments, the HD7 code simulations demonstrate that trapped electron mode (TEM) turbulence can be excited by ETG higher than the critical value observed in the experiment. In addition, the dependence of the mode growth rate (supposed to be proportional to the saturation level of fluctuations in quasi-linear theory) and the measured intensity of the density fluctuations is comparable. The simulated outward particle flux integrated over the poloidal wave number spectrum is significant and proportional to ETG. These observations demonstrate that the density fluctuation is TEM turbulence, which is driven by ETG and induces particle pump-out when the electron density/effective electron collision frequency is low. The potential relevance of this work with the controls of plasma profiles, impurities, helium ash, and heat transport in future reactors of similar low effective collision frequency is also discussed.

Funder

National Magnetic Confinement Fusion Program of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3