The mechanism of the global vertical force reduction in disruptions mitigated by massive material injection

Author:

Schwarz N.ORCID,Artola F.J.ORCID,Vannini F.ORCID,Hoelzl M.ORCID,Bernert M.,Bock A.ORCID,Driessen T.,Dunne M.ORCID,Giannone L.ORCID,Heinrich P.ORCID,de Marné P.,Papp G.ORCID,Pautasso G.,Gerasimov S.ORCID,Upgrade Team the ASDEX,Contributors JET,

Abstract

Abstract Disruptions lead to a rapid loss of thermal and magnetic energy and can cause large heat loads, mechanical forces, and the excitation of a beam of relativistic runaway electrons. The operation of tokamaks at high energy and plasma current requires the use of a mitigation system to limit such detrimental effects. Mitigation techniques rely mainly on the injection of a large amount of impurities to radiate the majority of the thermal and magnetic energies. Heat loads and electro-magnetic (EM) forces as well as their toroidal asymmetries can be greatly reduced by such measures. In this paper, a theory is lined out to explain the reduction of the global vertical force based on large toroidal halo currents that keep the current centroid stationary in the midplane. As a consequence, the vertical current moment, which is linked to the EM-force, is reduced. The theory is backed up by experimental observations in shattered pellet injection mitigated vertical displacement event experiments in ASDEX Upgrade (AUG) and JET as well as by 2D simulations with the extended MHD code JOREK. Scans in the boundary heat flux are carried out to estimate the correct scrape-off layer temperature and the influence of the fraction of conducted energy. Finally, predictive simulations for ITER confirm the reduction of the vertical force by the injection of impurities.

Funder

EUROfusion

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Reference64 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3