Overview of ASDEX upgrade results in view of ITER and DEMO

Author:

Zohm H.,Alessi E.,Angioni C.,Arden N.,Artigues V.,Astrain M.,Asunta O.,Balden M.,Bandaru V.,Banon Navarro A.,Bauer M.,Bergmann A.,Bergmann M.,Bernardo J.,Bernert M.,Biancalani A.,Bielajew R.,Bilato R.,Birkenmeier G.,Blanken T.,Bobkov V.,Bock A.,Bock L.,Body T.,Bolzonella T.,Bonanomi N.,Bortolon A.,Böswirth B.,Bottereau C.,Bottino A.,van den Brand H.,Brenzke M.,Brezinsek S.,Brida D.,Brochard F.,Buchanan J.,Buhler A.,Burckhart A.,Camenen Y.,Cannas B.,Cano Megías P.,Carlton D.,Carr M.,Carvalho P.,Castaldo C.,Castillo Castillo A.,Cathey A.,Cavedon M.,Cazzaniga C.,Challis C.,Chankin A.,Chomiczewska A.,Cianfarani C.,Clairet F.,Coda S.,Coelho R.,Coenen J.W.,Colas L.,Conway G.,Costea S.,Coster D.,Cote T.,Creely A.J.,Croci G.,Cruz Zabala D.J.,Cseh G.,Cziegler I.,D’Arcangelo O.,Dal Molin A.,David P.,Day C.,de Baar M.,de Marné P.,Delogu R.,Denner P.,Di Siena A.,Dibon M.,Dominguez-Palacios Durán J.J.,Dunai D.,Dreval M.,Dunne M.,Duval B.P.,Dux R.,Eich T.,Elgeti S.,Encheva A.,Esposito B.,Fable E.,Faitsch M.,Fajardo Jimenez D.,Fantz U.,Farnik M.,Faugel H.,Felici F.,Ficker O.,Figueredo A.,Fischer R.,Ford O.,Frassinetti L.,Fröschle M.,Fuchert G.,Fuchs J.C.,Fünfgelder H.,Futatani S.,Galazka K.,Galdon-Quiroga J.,Gallart Escolà D.,Gallo A.,Gao Y.,Garavaglia S.,Garcia Muñoz M.,Geiger B.,Giannone L.,Gibson S.,Gil L.,Giovannozzi E.,Girka I.,Girka O.,Gleiter T.,Glöggler S.,Gobbin M.,Gonzalez J.C.,Gonzalez Martin J.,Goodman T.,Gorini G.,Görler T.,Gradic D.,Granucci G.,Gräter A.,Grenfell G.,Greuner H.,Griener M.,Groth M.,Grover O.,Gude A.,Guimarais L.,Günter S.,Hachmeister D.,Hakola A.H.,Ham C.,Happel T.,den Harder N.,Harrer G.,Harrison J.,Hauer V.,Hayward-Schneider T.,Heinemann B.,Heinrich P.,Hellsten T.,Henderson S.,Hennequin P.,Herschel M.,Heuraux S.,Herrmann A.,Heyn E.,Hitzler F.,Hobirk J.,Höfler K.,Hörmann S.,Holm J.H.,Hölzl M.,Hopf C.,Horvath L.,Höschen T.,Houben A.,Hubbard A.,Huber A.,Hunger K.,Igochine V.,Iliasova M.,Illerhaus J.,Insulander Björk K.,Ionita-Schrittwieser C.,Ivanova-Stanik I.,Jachmich S.,Jacob W.,Jaksic N.,Jansen van Vuuren A.,Jaulmes F.,Jenko F.,Jensen T.,Joffrin E.,Kallenbach A.,Kalis J.,Kappatou A.,Karhunen J.,Käsemann C.-P.,Kasilov S.,Kazakov Y.,Kendl A.,Kernbichler W.,Khilkevitch E.,Kircher M.,Kirk A.,Kjer Hansen S.,Klevarova V.,Klossek F.,Kocsis G.,Koleva M.,Komm M.,Kong M.,Krämer-Flecken A.,Krause M.,Krebs I.,Kreuzeder A.,Krieger K.,Kudlacek O.,Kulla D.,Kurki-Suonio T.,Kurzan B.,Labit B.,Lackner K.,Laggner F.,Lahtinen A.,Lainer P.,Lang P.T.,Lauber P.,Lehnen M.,Leppin L.,Lerche E.,Leuthold N.,Li L.,Likonen J.,Linder O.,Lindl H.,Lipschultz B.,Liu Y.,Lu Z.,Luda Di Cortemiglia T.,Luhmann N.C.,Lunt T.,Lyssoivan A.,Maceina T.,Madsen J.,Magnanimo A.,Maier H.,Mailloux J.,Maingi R.,Maj O.,Maljaars E.,Maquet V.,Mancini A.,Manhard A.,Mantica P.,Mantsinen M.,Manz P.,Maraschek M.,Marchetto C.,Markl M.,Marrelli L.,Martin P.,Matos F.,Mayer M.,McCarthy P.J.,McDermott R.,Meng G.,Merkel R.,Merle A.,Meyer H.,Michelini M.,Milanesio D.,Mitterauer V.,Molina Cabrera P.,Muraca M.,Nabais F.,Naulin V.,Nazikian R.,Nem R.D.,Neu R.,Nielsen A.H.,Nielsen S.K.,Nishizawa T.,Nocente M.,Novikau I.,Nowak S.,Ochoukov R.,Olsen J.,Oyola P.,Pan O.,Papp G.,Pau A.,Pautasso G.,Paz-Soldan C.,Peglau M.,Peluso E.,Petersson P.,Piron C.,Plank U.,Plaum B.,Plöckl B.,Plyusnin V.,Pokol G.,Poli E.,Popa A.,Porte L.,Puchmayr J.,Pütterich T.,Radovanovic L.,Ramisch M.,Rasmussen J.,Ratta G.,Ratynskaia S.,Raupp G.,Redl A.,Réfy D.,Reich M.,Reimold F.,Reiser D.,Reisner M.,Reiter D.,Rettino B.,Ribeiro T.,Ricci D.,Riedl R.,Riesch J.,Rivero Rodriguez J.F.,Rocchi G.,Rodriguez-Fernandez P.,Rohde V.,Ronchi G.,Rott M.,Rubel M.,Ryan D.A.,Ryter F.,Saarelma S.,Salewski M.,Salmi A.,Samoylov O.,Sanchis Sanchez L.,Santos J.,Sauter O.,Schall G.,Schlüter A.,Scholte J.,Schmid K.,Schmitz O.,Schneider P.A.,Schrittwieser R.,Schubert M.,Schuster C.,Schwarz N.,Schwarz-Selinger T.,Schweinzer J.,Sciortino F.,Seibold-Benjak O.,Shabbir A.,Shalpegin A.,Sharapov S.,Sheikh U.,Shevelev A.,Sias G.,Siccinio M.,Sieglin B.,Sigalov A.,Silva A.,Silva C.,Silvagni D.,Simpson J.,Sipilä S.,Snicker A.,Solano E.,Sommariva C.,Sozzi C.,Spacek M.,Spizzo G.,Spolaore M.,Stegmeir A.,Stejner M.,Stieglitz D.,Stober J.,Stroth U.,Strumberger E.,Suarez Lopez G.,Suttrop W.,Szepesi T.,Tál B.,Tala T.,Tang W.,Tardini G.,Tardocchi M.,Terranova D.,Teschke M.,Thorén E.,Tierens W.,Told D.,Treutterer W.,Trevisan G.,Tripský M.,Ulbl P.,Urbanczyk G.,Usoltseva M.,Valisa M.,Valovic M.,van Mulders S.,van Zeeland M.,Vannini F.,Vanovac B.,Varela P.,Varoutis S.,Verdier T.,Verdoolaege G.,Vianello N.,Vicente J.,Vierle T.,Viezzer E.,Voitsekhovitch I.,von Toussaint U.,Wagner D.,Wang X.,Weiland M.,Wendler D.,White A.E.,Willensdorfer M.,Wiringer B.,Wischmeier M.,Wolf R.,Wolfrum E.,Yang Q.,Yoo C.,Yu Q.,Zagórski R.,Zammuto I.,Zehetbauer T.,Zhang W.,Zholobenko W.,Zibrov A.,Zilker M.,Zimmermann C.F.B.,Zito A.,Zohm H.,Zoletnik S., ,

Abstract

Abstract Experiments on ASDEX Upgrade (AUG) in 2021 and 2022 have addressed a number of critical issues for ITER and EU DEMO. A major objective of the AUG programme is to shed light on the underlying physics of confinement, stability, and plasma exhaust in order to allow reliable extrapolation of results obtained on present day machines to these reactor-grade devices. Concerning pedestal physics, the mitigation of edge localised modes (ELMs) using resonant magnetic perturbations (RMPs) was found to be consistent with a reduction of the linear peeling-ballooning stability threshold due to the helical deformation of the plasma. Conversely, ELM suppression by RMPs is ascribed to an increased pedestal transport that keeps the plasma away from this boundary. Candidates for this increased transport are locally enhanced turbulence and a locked magnetic island in the pedestal. The enhanced D-alpha (EDA) and quasi-continuous exhaust (QCE) regimes have been established as promising ELM-free scenarios. Here, the pressure gradient at the foot of the H-mode pedestal is reduced by a quasi-coherent mode, consistent with violation of the high-n ballooning mode stability limit there. This is suggestive that the EDA and QCE regimes have a common underlying physics origin. In the area of transport physics, full radius models for both L- and H-modes have been developed. These models predict energy confinement in AUG better than the commonly used global scaling laws, representing a large step towards the goal of predictive capability. A new momentum transport analysis framework has been developed that provides access to the intrinsic torque in the plasma core. In the field of exhaust, the X-Point Radiator (XPR), a cold and dense plasma region on closed flux surfaces close to the X-point, was described by an analytical model that provides an understanding of its formation as well as its stability, i.e., the conditions under which it transitions into a deleterious MARFE with the potential to result in a disruptive termination. With the XPR close to the divertor target, a new detached divertor concept, the compact radiative divertor, was developed. Here, the exhaust power is radiated before reaching the target, allowing close proximity of the X-point to the target. No limitations by the shallow field line angle due to the large flux expansion were observed, and sufficient compression of neutral density was demonstrated. With respect to the pumping of non-recycling impurities, the divertor enrichment was found to mainly depend on the ionisation energy of the impurity under consideration. In the area of MHD physics, analysis of the hot plasma core motion in sawtooth crashes showed good agreement with nonlinear 2-fluid simulations. This indicates that the fast reconnection observed in these events is adequately described including the pressure gradient and the electron inertia in the parallel Ohm’s law. Concerning disruption physics, a shattered pellet injection system was installed in collaboration with the ITER International Organisation. Thanks to the ability to vary the shard size distribution independently of the injection velocity, as well as its impurity admixture, it was possible to tailor the current quench rate, which is an important requirement for future large devices such as ITER. Progress was also made modelling the force reduction of VDEs induced by massive gas injection on AUG. The H-mode density limit was characterised in terms of safe operational space with a newly developed active feedback control method that allowed the stability boundary to be probed several times within a single discharge without inducing a disruptive termination. Regarding integrated operation scenarios, the role of density peaking in the confinement of the ITER baseline scenario (high plasma current) was clarified. The usual energy confinement scaling ITER98(p,y) does not capture this effect, but the more recent H20 scaling does, highlighting again the importance of developing adequate physics based models. Advanced tokamak scenarios, aiming at large non-inductive current fraction due to non-standard profiles of the safety factor in combination with high normalised plasma pressure were studied with a focus on their access conditions. A method to guide the approach of the targeted safety factor profiles was developed, and the conditions for achieving good confinement were clarified. Based on this, two types of advanced scenarios (‘hybrid’ and ‘elevated’ q-profile) were established on AUG and characterised concerning their plasma performance.

Funder

EUROfusion

Publisher

IOP Publishing

Reference64 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3