Experimental studies of plasma-antenna coupling with the JET Alfvén Eigenmode Active Diagnostic

Author:

Tinguely R.A.ORCID,Puglia P.G.,Fil N.,Dowson S.,Porkolab M.,Dvornova A.,Fasoli A.ORCID,Fitzgerald M.,Guillemot V.,Huysmans G.T.A.,Maslov M.,Sharapov S.ORCID,Testa D.ORCID,contributors JET

Abstract

Abstract This paper presents a dedicated study of plasma-antenna (PA) coupling with the Alfvén Eigenmode Active Diagnostic (AEAD) in JET. Stable AEs and their resonant frequencies f, damping rates γ < 0, and toroidal mode numbers n are measured for various PA separations and limiter versus X-point magnetic configurations. Two stable AEs are observed to be resonantly excited at distinct low and high frequencies in limiter plasmas. The values of f and n do not vary with PA separation. However, |γ| increases with PA separation for the low-f, but not high-f, mode, yet this may be due to slightly different edge conditions. The high-f AE is detected throughout the transition from limiter to X-point configuration, though its damping rate increases; the low-f mode, on the other hand, becomes unidentifiable. The linear, resistive MHD code CASTOR is used to simulate the frequency scan of an AEAD-like external antenna. For the limiter pulses, the high-f mode is determined to be an n = 0 GAE, while the low-f mode is likely an n = 2 TAE. During the transition from limiter to X-point configuration, CASTOR indicates that n = 1 and 2 EAEs are excited in the edge gap. These results extend previous experimental studies in JET and Alcator C-Mod; validate the computational work performed by Dvornova et al (2020 Phys. Plasmas 27 012507); and provide guidance for the optimization of PA coupling in upcoming JET energetic particle experiments, for which the AEAD will aim to identify the contribution of alpha particles to AE drive during the DT campaign.

Funder

Fusion Energy Sciences

Fundação de Amparo à Pesquisa do Estado de São Paulo

H2020 Euratom

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3