A statistical approach for the automatic identification of the start of the chain of events leading to the disruptions at JET

Author:

Aymerich E.ORCID,Fanni A.ORCID,Sias G.ORCID,Carcangiu S.ORCID,Cannas B.ORCID,Murari A.ORCID,Pau A.ORCID,JET contributors the

Abstract

Abstract This paper reports an algorithm to automatically identify the chain of events leading to a disruption, evaluating the so-called reference warning time. This time separates the plasma current flat-top of each disrupted discharge into two parts: a non-disrupted part and a pre-disrupted one. The algorithm can be framed into the anomaly detection techniques as it aims to detect the off-normal behavior of the plasma. It is based on a statistical analysis of a set of dimensionless plasma parameters computed for a selection of discharges from the JET experimental campaigns. In every data-driven model, such as the generative topographic mapping (GTM) predictor proposed in this paper, it is indeed necessary to label the samples needed for training the model itself. The samples describing the disruption-free behavior are extracted from the plasma current flat-top phase of the regularly terminated discharges. The disrupted space is described by all the samples belonging to the pre-disruptive phase of each disruptive discharge in the training set. Note that a proper selection of the pre-disruptive phase plays a key role in the prediction performance of the model. Moreover, these models, which are highly dependent on the training input space, may be particularly prone to degradation as the operational space of any experimental machine is continuously evolving. Hence, a regular schedule of model review and retrain must be planned. The proposed algorithm avoids the cumbersome and time-consuming manual identification of the warning times, helping to implement a continuous learning system that could be automated, despite being offline. In this paper, the automatically evaluated warning times are compared with those obtained with a manual analysis in terms of the impact on the mapping of the JET input parameter space using the GTM methodology. Moreover, the algorithm has been used to build the GTM of recent experimental campaigns, with promising results.

Funder

H2020 Euratom

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3