A dimensionality reduction algorithm for mapping tokamak operational regimes using a variational autoencoder (VAE) neural network

Author:

Wei Y.ORCID,Levesque J.P.ORCID,Hansen C.J.ORCID,Mauel M.E.ORCID,Navratil G.A.ORCID

Abstract

Abstract A variational autoencoder (VAE) is a type of unsupervised neural network which is able to learn meaningful data representations in a reduced dimensional space. We present an application of VAE in identifying the operational stability boundary of tokamak plasma discharges. This model was implemented using a dataset of over 3000 discharges from the high beta tokamak-extended pulse (HBT-EP) device. We found the VAE model to be capable of forming a continuous low-dimensional operational space map and identifying the operational boundaries using a specified warning time window. By projecting the operational parameters onto the same reduced space, this provides an intuitive way for the machine operator or an automated control system to perform disruption avoidance using a relevant control actuator as a discharge approaches a boundary. Pre-programmed GPU control experiments were conducted to demonstrate this control technique using HBT-EP’s saddle control coils as a horizontal position actuator, showing the ability to avoid the oncoming disruptive event and extend the duration of the discharge.

Funder

Fusion Energy Sciences

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3