Refractive index measurement of hydrogen isotopologue mixture and applicability for homogeneity of hydrogen solid at cryogenic temperature in fusion fuel system

Author:

Zhang JiaqiORCID,Iwamoto Akifumi,Shigemori KeisukeORCID,Hara Masanori,Yamanoi KoheiORCID

Abstract

Abstract Deuterium (D)-Tritium (T) nuclear fusion reaction has potential as an energy source in the future. In both magnetic confinement and inertial confinement fusion reactors, solid D–T will generally be supplied as fusion fuel. The efficiency of the nuclear fusion reaction depends on the quality of solid D–T fuel, which is related to the composition, homogeneity, helium-3 (3He) content, and so on. However, there is no technique for in-situ examination of solid D–T fuel. In this study, we consider a simple and precise method for the characterization of solid hydrogen isotopologues at cryogenic temperature using refractive index measurement, and evaluate the distribution of hydrogen isotopologue composition and homogeneity. To evaluate without the effect of tritium decay, the homogeneity of the hydrogen (H2)-deuterium (D2) mixture is measured at first. By the in-situ refractive index measurement at cryogenic temperature, the homogeneity of solid H2–D2 mixture is roughly quantified. The phase diagram of the H2–D2 mixture shows a solid solution type. D2-rich crystal first appears from the liquid phase as a primary crystal. The composition of D2 in liquid phase ias homogeneous, whereas it reduces by obeying the liquidus line in the phase diagram with the crystallization. On the other hand, the composition of the H2–D2 mixture in solid phase is inhomogeneous because the mobility of H2 and D2 in solid phase was too slow to be homogeneous and solid. The compositions of H2–D2 mixture in liquid and solid phases could be evaluated by the in-situ refractive index measurement in time. Consequently, the refractive index measurement shows great potential as an inspection method of solid D–T fuel in fusion reactors.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3