Abstract
Abstract
The effect of helium (He)-induced surface microstructure on deuterium (D) plasma-driven permeation through a reduced activation ferritic/martensitic steel CLF-1 has been studied. CLF-1 steel was pre-exposed by He plasma with ion fluence of 1022–1024 He m−2 and an incident energy of 100 eV at 708 K. The following D plasma-driven permeation experiment was performed at 693 K. Steady-state D permeation flux decreases with the increase in He ion fluence. D diffusion coefficient is not significantly affected by He pre-damage, while D reflection coefficient increases with the enhancement of He ion fluence. Scanning electron microscope and transmission electron microscope analyses clearly reveal the evolution of surface roughness and He bubble layer after He plasma exposure. Elastic recoil detection was used to identify He concentration depth profiles in the samples. Both the surface microstructure modification and He bubble layer formation contribute to the reduction of D permeation.
Funder
Science Foundation of Institute of Plasma Physics, Chinese Academy of Sciences
Youth Innovation Promotion Association of the Chinese Academy of Sciences
National Natural Science Foundation of China
National Magnetic Confinement Fusion Program of China
Subject
Condensed Matter Physics,Nuclear and High Energy Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献