Water activation products generation and transport in DEMO divertor

Author:

Chiovaro P.ORCID,Quartararo A.ORCID,Avona P.,Bongiovì G.,Di Maio P.A.,Giambrone S.ORCID,Moscato I.,Vallone E.ORCID

Abstract

Abstract In water-cooled nuclear reactors, the issue of neutron-activated products transport along the primary heat transfer system (PHTS) is very demanding, as it is a coupled neutronic/fluid-dynamic problem requiring a challenging balance between accuracy and reasonable computational time. This work addresses the transport of water activation products in large hydraulic circuits. Regarding the nuclear calculations, the assessment of the production rates of the radioisotope concentrations has been performed by Monte Carlo analyses adopting the MCNP5.1.6 code, while for the transportation calculations, an innovative method has been expressly developed. It foresees a one-dimensional nodalization, in a MATLAB-Simulink environment, of the hydraulic circuit considered with a computational fluid-dynamic (CFD) characterization (by ANSYS CFX code) of the nodes under neutron flux, that is the components where radioisotopes are formed, and the highest gradients of concentration are present. The method was compared with one-dimensional models not supported by fluid-dynamic analysis. The results of this comparison showed that in cases involving fairly complicated geometries and radioisotopes with a small half-life, CFD analyses are necessary to achieve adequate accuracy. The procedure was applied to very large and rather complex hydraulic circuits like the divertor PHTSs of DEMO fusion reactor to obtain the concentrations of the activation products of the water constituents (16N, 17N, 19O, 14C, 41Ar) along such systems.

Funder

EUROfusion

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3