The advanced tokamak path to a compact net electric fusion pilot plant

Author:

Buttery R.J.ORCID,Park J.M.,McClenaghan J.T.,Weisberg D.ORCID,Canik J.,Ferron J.,Garofalo A.ORCID,Holcomb C.T.,Leuer J.,Snyder P.B.ORCID

Abstract

Abstract Physics-based simulations project a compact net electric fusion pilot plant with a nuclear testing mission is possible at modest scale based on the advanced tokamak concept, and identify key parameters for its optimization. These utilize a new integrated 1.5D core-edge approach for whole device modeling to predict performance by self-consistently applying transport, pedestal and current drive models to converge fully non-inductive stationary solutions, predicting profiles and energy confinement for a given density. This physics-based approach leads to new insights and understanding of reactor optimization. In particular, the levering role of high plasma density is identified, which raises fusion performance and self-driven ‘bootstrap currents’, to reduce current drive demands and enable high pressure with net electricity at a compact scale. Solutions at 6–7 T, ∼4 m radius and 200 MW net electricity are identified with margins and trade-offs possible between parameters. Current drive comes from neutral beam and ultra-high harmonic (helicon) fast wave, though other advanced approaches are not ruled out. The resulting low recirculating power in a double null configuration leads to a divertor heat flux challenge that is comparable to ITER, though reactor solutions may require more dissipation. Strong H-mode access (x2 margin over L–H transition scalings) and ITER-like heat fluxes are maintained with ∼20%–60% core radiation, though effects on confinement need further analysis. Neutron wall loadings appear tolerable. The approach would benefit from high temperature superconductors, as higher fields would increase performance margins while potential for demountability may facilitate nuclear testing. However, solutions are possible with conventional superconductors. An advanced load sharing and reactive bucking approach in the device centerpost region provides improved mechanical stress handling. The prospect of an affordable test device which could close the loop on net-electric production and conduct essential nuclear materials and breeding research is compelling, motivating research to validate the techniques and models employed here.

Funder

Fusion Energy Sciences

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3