Impact of Soret effect on hydrogen and helium retention in PFC tungsten under ELM-like conditions

Author:

Dasgupta DwaipayanORCID,Blondel Sophie,Martínez EnriqueORCID,Maroudas DimitriosORCID,Wirth Brian D.ORCID

Abstract

Abstract In our previous work, we have demonstrated using nonequilibrium molecular-dynamics simulations that the fluxes of helium and self-interstitial atoms in the presence of a thermal gradient in tungsten are directed opposite to the heat flux, indicating that species transport is governed by a Soret effect, namely, thermal-gradient-driven diffusion, characterized by a negative heat of transport that drives species transport uphill, i.e. from the cooler to the hot regions of the tungsten sample. In this work, the findings of our thermal and species transport analysis have been implemented in our cluster-dynamics code, Xolotl, which has been used to compute temperature and species profiles over spatiotemporal scales representative of plasma-facing component (PFC) tungsten under typical reactor operating conditions, including extreme heat loads at the plasma-facing surface characteristic of plasma instabilities that induce edge localized modes (ELMs). We demonstrate that the steady-state species profiles, when properly accounting for the Soret effect, vary significantly from those where temperature-gradient-driven transport is not accounted for and discuss the implications of such a Soret effect on the response to plasma exposure of plasma-facing tungsten. Although our cluster-dynamics simulations do not yet include self-clustering of helium or hydrogen blister formation, our simulation results show that the Soret effect substantially reduces helium and hydrogenic species retention inside PFC tungsten.

Funder

UT-Battelle

U.S. Department of Energy

South Carolina EPSCoR

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3