Electron beam-plasma discharge in GDT mirror trap: Particle-in-cell simulations

Author:

Timofeev IgorORCID,Annenkov VladimirORCID,Volchok EvgeniiaORCID,Glinskiy Vladimir

Abstract

Abstract The paper presents the results of numerical simulations of the collective relaxation of an electron beam in a magnetized plasma at the parameters typical to experiments on the ignition of a beam-plasma discharge in the Gas Dynamic Trap. The goal of these simulations is to confirm the ideas about the mechanism of the discharge development, which are used to interpret the results of recent laboratory experiments [Soldatkina et al 2021 {\it Nucl. Fusion}]. In particular, a characteristic feature of these experiments is the localization of the beam relaxation region in the vicinity of the entrance mirror. A strong mirror magnetic field compresses the beam so that its transverse size becomes less than the wavelength it excites. In addition, near the mirror, the electron cyclotron frequency is much higher than the plasma one, which can significantly affect the possibility of propagation of the most unstable waves outside the beam. Particle-in-cell simulations make it possible not only to find how efficiently intense plasma oscillations penetrate the rarefied periphery, but also to prove that the turbulent zone in a realistic nonuniform plasma has regions dominated by transverse electric fields. This creates the necessary conditions for efficient acceleration of the trapped particles to energies much higher than the initial beam energy.

Funder

Foundation for the Advancement of Theoretical Physics and Mathematics

State assignment of the INP SB RAS

Grant of the President of the Russian Federation

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3