Abstract
Abstract
The FuZE sheared-flow-stabilized Z pinch at Zap Energy is simulated using whole-device modeling employing an axisymmetric resistive magnetohydrodynamic formulation implemented within the discontinuous Galerkin WARPXM framework. Simulations show formation of Z pinches with densities of approximately 1022 m−3 and total DD fusion neutron rate of 107 per µs for approximately 2 µs. Simulation-derived synthetic diagnostics show peak currents and voltages within 10% and total yield within approximately 30% of experiment for similar plasma mass. The simulations provide insight into the plasma dynamics in the experiment and enable a predictive capability for exploring design changes on devices built at Zap Energy.
Funder
Air Force Office of Scientific Research
Advanced Research Projects Agency - Energy
National Energy Research Scientific Computing Center