Observation of MHD-correlated blobs during internal reconnection events in VEST

Author:

Jung E.C.ORCID,Na Y.S.,Kim S.,Jeong W.I.,Park J.-K.ORCID,Hahm T.S.,Ghim Y.-c.ORCID,Hwang Y.S.

Abstract

Abstract Internal reconnection events (IREs), one of the relaxation events driven by internal magnetohydrodynamic (MHD) instabilities in fusion plasmas, are accompanied by a strongly MHD-correlated blob at the edge in the Versatile Experiment Spherical Torus spherical tokamak. The MHD-correlated blob plays a significant role in the onset and the strength of IREs. Various techniques analyzing visible camera images show correlated waveforms between blobs and magnetic fluctuations, and they produce visualized images of corotating structures of the MHD modes and the MHD-correlated blobs. In the images, a phase drag in the rotations of the two structures initially appears and vanishes on the verge of IREs. IREs maintaining the phase drag, however, leads to a less violent impact in terms of current decrease and magnetic field bursting. In addition, the MHD-correlated blobs are followed by the increasing degree of nonlinear interactions between the internal MHD mode and high-frequency broadband fluctuations (>60 kHz) at the edge. These results suggest that boundary plasmas can impact internally driven relaxation events via MHD-correlated edge phenomena.

Funder

Ministry of Science and ICT, South Korea

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Reference35 articles.

1. Disruptions in tokamaks;Schuller;Plasma Phys. Control. Fusion,1995

2. Disruptions in JET;Wesson;Nucl. Fusion,1989

3. Magneto-hydro-dynamic limits in spherical tokamaks;Hender;Phys. Plasmas,1999

4. Phenomenology of internal reconnections in the National Spherical Torus Experiment;Semenov;Phys. Plasmas,2003

5. High-β performance of the START spherical tokamak;Sykes;Plasma Phys. Control. Fusion,1997

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3