Direct measurement of the electron turbulence-broadening edge transport barrier to facilitate core–edge integration in tokamak fusion plasmas

Author:

Wang H.Q.ORCID,Hong R.ORCID,Jian X.,Rhodes T.L.ORCID,Guo H.Y.,Leonard A.W.ORCID,Ma X.ORCID,Watkins J.G.,Ren J.,Grierson B.A.ORCID,Shafer M.W,Scotti F.,Osborne T.H.,Thomas D.M.,Yan Z.

Abstract

Abstract The integration of a high-performance core and a dissipative divertor, or the so-called ‘core–edge integration,’ has been widely identified as a critical gap in the design of future fusion reactors. In this letter, we report, for the first time, direct experimental evidence of electron turbulence at the DIII-D H-mode pedestal that correlates with the broadening of the pedestal and thus facilitates core–edge integration. In agreement with gyrokinetic simulations, this electron turbulence is enhanced by high η e (η e = Ln /LT e, where Ln is the density scale length and LT e is the electron temperature scale length), which is due to a strong shift between the density and temperature pedestal profiles associated with a closed divertor. The modeled turbulence drives significant heat transport with a lower pressure gradient that may broaden the pedestal to a greater degree than the empirical and theoretically predicted pedestal width scalings. Such a wide pedestal, coupled with a closed divertor, enables us to achieve a good core–edge scenario that integrates a high-temperature low-collisionality pedestal (pedestal top temperature T e,ped > 0.8 keV and a pedestal top collisionality ν*ped < 1) under detached divertor conditions. This paves a new path toward solving the core–edge integration issue in future fusion reactors.

Funder

U.S. Department of Energy

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3