Abstract
Abstract
Distributions of deposits and hydrogen (H) on the graphite divertor target elements TM4h4 and TM3v5 in the test divertor units 3 (TDUs3) of Wendelstein 7-X (W7-X) are studied. The TM4h4 and TM3v5 are located at the magnetically symmetric positions in the upper and lower divertor. The microstructure of the deposition layer is characterized by a transmission electron microscope (TEM) combined with a focused ion beam (FIB). Metallic deposits such as iron (Fe), molybdenum (Mo), chromium (Cr) are detected in the deposition layer by energy-dispersive x-ray spectroscopy (EDS). The depth-resolved distribution patterns of boron (B) and metallic deposits on upper and lower horizontal (h) divertor target elements TDUs3-TM4h4 as well as upper and lower vertical (v) divertor target elements TDUs3-TM3v5 are clarified by glow discharge optical emission spectrometry (GDOES). Results for both TDUs3-TM4h4 and TDUs3-TM3v5 show that the B deposition regions exhibit higher H retention due to the co-deposition with deposits. On the other hand, up-down asymmetries in B deposition caused by particle drift exist on both TDUs3-TM4h4 and TDUs3-TM3v5. The B deposition amount on upper TDUs3-TM4h4 is 40% smaller than that on lower TDUs3-TM4h4. While for the vertical target elements, the B deposition amount on upper TDUs3-TM3v5 is 35% larger than that on lower TDUs3-TM3v5. Meanwhile, a shift of around 3 cm in B deposition peaks is observed on upper and lower TDUs3-TM4h4 and TDUs3-TM3v5. Results of numerical simulation of carbon deposition/erosion profiles on the target elements using ERO2.0 code and power flux measured by infrared cameras are shown and compared with the above mentioned B profiles.
Funder
NIFS Stellarator-Heliotron Association Committee
The European Union via the Euratom Research and Training Programme
JSPS KAKENHI Grant
Subject
Condensed Matter Physics,Nuclear and High Energy Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献