The role of RF-induced E×B flows in the mitigation of scrape-off-layer convective transport during ion cyclotron resonance heating

Author:

Diab R.ORCID,Decristoforo G.ORCID,Ahmed S.ORCID,Baek S.G.,Lin Y.,Marmar E.,Terry J.L.ORCID,Wukitch S.J.

Abstract

Abstract While multiple experiments have reported a decrease in intermittent fluctuations in the far Scrape-Off-Layer (SOL) during ion cyclotron resonance heating (Antar et al 2010 Phys. Rev. Lett. 105 165001, Li et al 2022 Nucl. Eng. Technol. 54 207–19, Antar et al 2012 Nucl. Fusion 52 103005), the physical mechanism behind this observation has not been fully established yet. In this work, we demonstrate, for the first time, a direct correlation between the amplitude of RF-induced E×B flows and turbulence suppression in the far SOL. Using the Gas Puff Imaging (GPI) diagnostic on Alcator C-Mod, we show again that Ion Cyclotron Range of Frequencies can significantly alter the flow in the SOL and introduce a shear layer in regions magnetically connected close to the antenna (Cziegler et al 2012 Plasma Phys. Control. Fusion 54 105019). With the 4-strap field-aligned antenna operated in dipole phasing, the ratio of the power coupled by the central two straps to the power coupled by the outer two straps was varied. The resulting RF-induced radial electric field magnitude thus varied, and we show that the impact on the far SOL turbulence correlates with the modified E×B velocity. We then apply a newly-developed blob tracking algorithm (Han et al 2022 Sci. Rep. 12 18142) to higher-resolution GPI videos in order to directly observe the process of blob shearing by RF-induced E×B flows. We show that the radially sheared poloidal flows act as a transport barrier by stretching, stopping, and destroying filaments, which is consistent with the observed difference in turbulence statistics.

Funder

U.S. Department of Energy

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3