Transition in particle transport under resonant magnetic perturbations in a tokamak

Author:

Kim S.K.ORCID,Logan N.C.ORCID,Becoulet M.,Hoelzl M.ORCID,Hu Q.ORCID,Huijsmans G.T.A.,Pamela S.J.P.,Yu Q.ORCID,Yang S.M.ORCID,Paz-soldan C.ORCID,Kolemen E.ORCID,Park J.-K.ORCID

Abstract

Abstract Nonlinear 3D MHD simulations and validations reveal that the hybrid particle-MHD transport is a key process for driving the pump-out in the presence of Resonant Magnetic Perturbations (RMPs) in the KSTAR tokamak. Particle transport and the resulting density pump-out by RMPs are shown to be composed of not only the classical flow convection near magnetic islands due to polarization but also the neoclassical ion diffusion across perturbed magnetic surfaces. The latter is known as the Neoclassical Toroidal Viscosity (NTV) and is integrated into nonlinear MHD simulations here for the first time, revealing that the two-stage pump-outs observed in KSTAR experiments are reproduced only with such integrated nonlinear MHD and transport evolution. Near-resonant responses, which have received less attention than the resonant response, play distinct roles in the pump-out along with the island formation. In addition, this modeling is used to investigate the pump-outs in double-null-like plasmas and numerically capture the effect of the double-null shape on the pump-outs, which may explain the difficulty of Edge Localized Mode (ELM) suppression access in double-like plasmas. This reveals new aspects of the impact toroidal geometry and mode coupling have on 3D physics and reveals the importance of near-resonant components in suppressing ELMs.

Funder

H2020 Euratom

U.S. Department of Energy

Korea Institute of Fusion Energy

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3