Edge-localized-mode simulation in CFETR steady-state scenario

Author:

Tang T.F.ORCID,Xu X.Q.,Li G.Q.,Chen J.L.ORCID,Chan V.S.,Xia T.Y.,Gao X.ORCID,Wang D.Z.ORCID,Li J.G.

Abstract

Abstract The EPED1 model and self-consistent core-pedestal coupling in integrated modeling are used to design the pedestal structure of the China Fusion Engineering Testing Reactor (CFETR) steady-state scenario. The key parameters, such as β p and q 95, are based on the grassy edge-localized-mode (ELM) experimental database. In this work, we use the BOUT++ six-field two-fluid code to simulate the onset of the ELM in the CFETR steady-state scenario. The ELM size is around 0.2% in nonlinear simulations, which is in the experimental range of the grassy ELM discharges, 0.1%–1% observed in multiple tokamak devices. Linear and nonlinear simulations show that the dominant high-n ballooning modes peak around n = 40. Compared to type-I ELM crashing dynamics, grassy ELM crashing has a smaller initial crash and is then followed by three phases of turbulence spreading, which are dominated by multi-modes, a high-n mode of n = 45 and low-n mode of n = 5, respectively. In contras to type-I ELM, the perturbation of the high-n mode has a narrow width around ψ = 0.95, and magnetic island formation and reconnection occur only beyond ψ = 0.95, leading to a small initial crash. Mode–mode interaction in the multi-mode coexistence stage stops the growth of individual modes and reduces the transport of particles and heat, and these are the two reasons why the ELM size is small. In–out asymmetry of transient heat flux with a ratio of E out/E in = 3.5 is found during grassy ELM crash. The rise and delay times of the heat flux match the calculation from the free-streaming model. To evaluate the erosion of the divertor target, the energy fluence at the outer divertor target is calculated, which is 0.029 MJ m−2, 5.5 times smaller than the tungsten melting limit 0.16 MJ m−2. The calculated energy fluency still follows the experimental scaling law from type-I ELM experiments. The fluctuation eddies in the toroidal direction show a filament structure at the outer mid-plane. Parallel heat flux patterns with a toroidal mode number n = 10 are found at the outer divertor with an amplitude of 680 MW m−2.

Funder

National Key R&D Program of China

U.S. Department of Energy

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3