MARS-Q modeling of kink-peeling instabilities in DIII-D QH-mode plasma

Author:

Dong G.Q.ORCID,Liu Y.Q.ORCID,Chen X.ORCID,Hao G.Z.ORCID,Liu Y.,Wang S.ORCID,Zhang N.ORCID,Xia G.L.

Abstract

Abstract In quiescent H-mode (QH-mode) regime, edge harmonic oscillations (EHOs) are believed to provide necessary radial transport to prevent occurrence of large edge localized modes. A systematic modeling study is performed here on the low-n EHOs in a DIII-D QH-mode plasma (Chen et al 2016 Nucl. Fusion 56 076011), by utilizing the MARS-Q code (Liu et al 2013 Phys. Plasmas 20 042503). Both the n = 1 and n = 2 instabilities are found to be strongly localized near the plasma edge, exhibiting the edge-peeling characteristics. The DIII-D resistive wall is found to have minor effects on these instabilities. The plasma resistivity is found to strongly modify the mode growth rate. Assuming the Spitzer model for the plasma resistivity, the computed mode growth rate scales as S −1/3 with S being the Lundquist number. Toroidal flow of the plasma slightly stabilizes these edge localized kink-peeling modes. Drift kinetic effects all have a destabilization effect on these modes. Non-perturbative magneto-hydrodynamic-kinetic hybrid computations find that the drift kinetic effects associated with thermal particle species push the peak location of the eigenmode radially inward but still in the pedestal region. The modeled plasma temperature and density fluctuations in the plasma edge region, as well as the poloidal magnetic field perturbations along both the low and high field sides of the plasma surface, are in good agreement with experimental measurements. Finally, the quasi-linear initial value simulations find a strong non-linear interplay between the kink-peeling instability and the toroidal flow near the plasma edge. The combined effect of the damping of the flow amplitude and change of the edge flow shear is found to be the stabilizing factor for the kink-peeling mode, leading to the mode saturation and thus EHOs.

Funder

National Natural Science Foundation of China

National Magnetic Confinement Fusion Program of China

U.S. Department of Energy

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3