Abstract
Abstract
Pumpout of argon ions by ICRF waves has been observed in C-Mod deuterium L- and I-mode plasmas that had a substantial hydrogen fraction. The effect is manifested by a reduction of core argon x-ray brightness up to a factor of 90% on time scales of tens of milliseconds following injection of ICRF power. For Ar16+, the pumpout is strongest for hydrogen minority concentrations between 0.25 and 0.4, when the ICRF waves are not expected to result in minority heating. Modeling with the TORIC code suggests that the pumpout process occurs when the H/D mode conversion layer overlaps with the 2nd harmonic impurity resonance layer. The magnitude of the argon pumpout is independent of ICRF power above an apparent threshold of ∼500 kW, independent of electron density and appears to decrease as the plasma current is increased. Potential application as a heavy impurity control tool in reactors is discussed.
Subject
Condensed Matter Physics,Nuclear and High Energy Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Main Challenges of Heating Plasma with Waves at the Ion Cyclotron Resonance Frequency (ICRF);Advances in Fusion Energy Research - From Theory to Models, Algorithms, and Applications;2022-12-14