E × B flow driven electron temperature bifurcation in a closed slot divertor with ion B × ∇B away from the X-point in the DIII-D tokamak

Author:

Ma X.ORCID,Wang H.Q.ORCID,Guo H.Y.,Leonard A.ORCID,Maurizio R.ORCID,Meier E.T.,Ren J.,Stangeby P.C.ORCID,Sinclair G.ORCID,Thomas D.M.,Wilcox R.S.ORCID,Yu J.H.,Watkins J.

Abstract

Abstract An electron temperature bifurcation is observed in the small angle slot divertor, which has been developed to enhance neutral cooling across the divertor target by coupling a closed slot structure with appropriate target shaping. Experiments in the DIII-D tokamak and associated SOLPS-ITER modeling with full drifts find a strong interplay between drifts and divertor geometry on divertor dissipation. The coupling of divertor geometry and drift flows can strongly affect the path towards divertor detachment onset as the plasma density is raised. With the strike point on the inner slanted surface and ion B × ∇B away from the magnetic X-point, bifurcative transitions were observed with sharp decrease of T e towards detachment onset both experimentally and computationally. This differs from the situation for the open divertor where the T e cliff was only observed for ion B × ∇B towards the X-point. SOLPS-ITER modeling with full drifts demonstrates that the magnitude of the E × B drift flow is comparable with the main plasma flow. The reversal of both the poloidal and radial E × B flows near the strike point leads to rapid density accumulation right near the separatrix, which results in bifurcative step transition of divertor conditions with cold plasma across the entire divertor target plate. These results indicate that the interplay between geometry and drifts should be fully taken into account in future fusion reactor divertor designs.

Funder

U.S. Department of Energy

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3