A unified description of atomic physics for electron Fokker–Planck calculations

Author:

Savoye-Peysson Y.ORCID,Mazon D.ORCID,Bielecki J.ORCID,Dworak D.ORCID,Król K.ORCID,Jardin A.ORCID,Scholz M.ORCID,Walkowiak J.ORCID,Decker J.ORCID

Abstract

Abstract Most realistic kinetic calculations for tokamak plasmas are now required to incorporate the effect of partially ionized high-Z elements arising either from uncontrolled influxes of metallic impurities, such as tungsten in high input power regimes or from mitigation of runaway electrons generated after possible major disruptions by massive gas injection. The usual electron–ion Fokker–Planck collision operator must therefore be modified, because all plasma atoms are not entirely ionized, as is the case for light elements. This represents a challenge, in order to perform fast but also accurate calculations, regardless of the type of element present in the plasma, but also their local levels of ionization while covering a wide range of electron energies in a consistent way, from a few keV to tens of MeV in plasmas whose electron temperature may itself vary from 10 eV to several keV. In this context, a unified description of the atomic models is proposed, based on a multi-Yukawa representation of the electrostatic potential calibrated against results obtained by advanced quantum calculations. Besides the possibility to improve the description of inner and outer atomic shells in the determination of the atomic form factor, this model allows one to derive analytical formulations for both elastic and inelastic scattering, which can then be easily incorporated in kinetic calculations. The impact of the number of exponentials in the description of the atomic potential is discussed, and a comparison with simple and advanced atomic models is also performed.

Funder

National Science Centre, Poland

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Reference69 articles.

1. WEST Physics Basis

2. Development of high poloidal beta, steady-state scenario with ITER-like tungsten divertor on EAST

3. Effect of partially ionized high-Z atoms on fast electron dynamics in tokamak plasmas;Peysson,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3