An extensive analysis of SOL properties in high-δ plasmas in ASDEX Upgrade

Author:

Redl A.ORCID,Eich T.,Vianello N.ORCID,Adamek J.ORCID,Bernert M.ORCID,Birkenmeier G.ORCID,Brida D.ORCID,David P.ORCID,Faitsch M.ORCID,Fischer R.,Grenfell G.ORCID,Ochoukov R.,Rohde V.ORCID,Tal B.ORCID,Dreval M., ,

Abstract

Abstract A set of dedicated H-mode discharges with constant heating power combining Neutral Beam Injection and Electron Cyclotron Resonance Heating have been executed at the ASDEX Upgrade tokamak using a high triangularity magnetic geometry in order to investigate the impact of filamentary transport to divertor and non-divertor components. The evolution of upstream scrape-off layer (SOL) profiles have been correlated with dedicated separatrix quantities, mostly with the turbulence control parameter α t (Eich and Manz 2021 Nucl. Fusion 61 086016) describing the turbulence level at the separatrix. With increasing α t , a broadening of the upstream density profiles in the near-SOL together with the formation of a density shoulder in the far-SOL have been observed. This phenomenon is associated with an enhanced filamentary transport dominating the radial turbulent transport in the far-SOL and confirmed by means of the cooling water calorimetry on non-divertor components. The probe measurements conducted with the ball-pen probe-head mounted on the midplane manipulator and a retarding-field analyzer close to the limiter surface indicate that the key mechanism increasing the radial filamentary transport to the first wall is an increase of the particle flux Γ r , fil , caused primarily by the packing fraction f PF , fil and the filament density n e , fil . At the same time, the electron temperature T e and ion temperature T i measured close to the limiter surface show only small variations above α t > 0.5. Both the filamentary heat flux and the gross erosion derived from the first wall probe measurements reach a magnitude that should be considered in the design of future fusion reactors.

Funder

HORIZON EUROPE Climate, Energy and Mobility

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3