Analysis of discrepancies between D1S and R2S results of 2016 DD JET Campaign

Author:

Alguacil J.ORCID,Catalan J.P.ORCID,Sauvan P.ORCID,Villari R.ORCID,Batistoni P.ORCID,Sanz J.

Abstract

Abstract In the frame of the WPJET3-DT Technology project within the EUROfusion Consortium program, neutronics experiments are being carried out in preparation for the current deuterium–tritium campaign on JET (DTE2). The experiments are conducted to validate the neutronics codes and tools used in ITER, thus reducing the related uncertainties and the associated risks in the machine operation. Recently, the shutdown dose rate (SDR) results of the 2016 DD campaign have been analyzed using the D1S and R2S computational methodologies showing relevant differences between the results provided by both methods. The greatest discrepancies, found in the SDR calculated in the second octant at 6 h after shutdown, are a factor 2 of difference in the total decay photon flux and a different peak location close to 0.511 MeV. This article presents a detailed analysis of the D1S and R2S simulations performed to find the causes of these discrepancies. The conclusions of the analysis determine that the use of the typical neutron and gamma energy structures used in common R2S simulations can tend to a photon flux significant overestimation or a shift in the output spectrum, respectively. In addition to alerting about this important problem in R2S calculations, this article also proposes a solution to mitigate each effect that can be implemented in R2S codes. The application of the proposed solutions significantly reduces the differences between the photon spectrum calculated with D1S and R2S methods.

Funder

H2020 Euratom

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3