Investigation on the scaling of magneto-Rayleigh–Taylor instability to the current rise time of Z-pinch plasmas

Author:

Xiaoguang Wang,Xiaodong Ren,Shijian Meng,Chongyang Mao,Delong Xiao,Qiang Yi,Shaotong Zhou,Xianbin Huang,Xiuwen Zhou,Wenqian Weng,Zhanchang Huang,Chuang Xue,Guanqiong Wang,Shunkai Sun,Xiaojian Shu

Abstract

Abstract Understanding how the magneto-Rayleigh–Taylor instability (MRTI) scales to the current rise time is vital for Z-pinch dynamic hohlraum driven inertial confinement fusion. Wang et al discovered in prior theoretical work that the perturbation amplitude of MRTI before stagnation increases linearly with the current rise time when the implosion velocity of Z-pinch plasma is held constant. In the present work, three types of wire-array experiments with similar implosion dynamics and constant implosion velocity are performed on an 8 MA pulse power generator to investigate the scaling of MRTI to the rise time. It is successfully accomplished for the first time to obtain the similar wire-array Z-pinch implosions in which the current rise time is scaled up to three times on the generator by controlling the trigger time of its 24 modules. Both the experimental results, which include x-ray radiation pulses and x-ray images of imploding plasmas, and the related numerical analysis have shown that the MRTI before stagnation grows linearly with the rise time, as predicted by the theoretical model.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3