Deuterium retention in co-deposition with lithium in Magnum-PSI: experimental analysis and comparison with SOLPS-ITER

Author:

Morbey M.,Gonzalez J.ORCID,Arnoldbik W.M.,Tyburska-Pueschel B.,Morgan T.W.ORCID

Abstract

Abstract The vapor-box, a liquid metal design for the divertor, utilizes lithium recirculation through evaporation and condensation. Safety concerns arise from Li-D/T formation and co-deposition on vapor-box walls and the first wall, affecting tritium retention. Additively manufactured tungsten capillary porous structure (CPS) samples with Li were exposed to high heat flux D plasmas in the linear plasma device Magnum-PSI, to study D retention in Li–D co-deposition dependence on substrate temperature (200  C–428  C) and distance from the plasma beam center (25–85 mm). The D:Li ratio was determined via in-situ ion beam diagnostics with simultaneously analyzed Nuclear Reaction Analysis and Elastic Backscattering Spectroscopy spectra to maximize the precision. Experimental results approach close to the theoretical maximum at 40:60 D:Li ratio and deposited film thickness ranging from 0.02 to 3.2 µm. Witness plate temperatures above 400  C yielded Li films under 150 nm in thickness with lower D:Li ratios (5:95 D:Li ratio). At this temperature LiD decomposition pressure is comparable with vessel pressure during plasma. SOLPS-ITER simulations narrowed CPS surface temperature to 650  C–700  C, indicating Li+ plasma dominance near the target surface. Redeposition ratio of lithium on the CPS surface was determined to be around 80 % , matching quartz crystal microbalance results. However, SOLPS-ITER simulations lacked accuracy in recreating observed Li and D deposition layers on WPs, improvements are needed to model plasmas with significant Li quantities. Extension of SOLPS-ITER simulations to include LiD molecules and enhance heat flux accuracy is crucial for better alignment with experimental data.

Funder

NWO

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3