Global gyrokinetic simulations of the impact of magnetic island on ion temperature gradient driven turbulence

Author:

Li JingchunORCID,Xu J.Q.ORCID,Qu Y.R.,Lin Z.,Dong J.Q.,Peng X.D.,Li J.Q.

Abstract

Abstract The effect of island width on the multi-scale interactions between magnetic island (MI) and ion temperature gradient (ITG) turbulence has been investigated based on the global gyrokinetic approach. It is found that the coupling between the island and turbulence is enhanced when the MI width (w) becomes larger. A vortex flow that is highly sensitive to the width of the MI can be triggered, ultimately resulting in a potent E × B shear flow and a consequent reduction in turbulent transport. The shearing rate induced by the vortex flow is minimum at the O-point while it is maximum at both of the two reconnection points of the island, i.e. the X-points, regardless of the island width. There exists a nonmonotonic relationship between zonal flow (ZF) amplitude and island width, showing that the ZF is partially suppressed by medium-sized MIs whereas enhanced in the case of large island. A larger MI can tremendously damage the ITG mode structure, resulting in higher turbulent transport at the X-point whereas a lower one at the O-point, respectively. Such phenomenon will be less distinct at very small island widths below w/a ∼ 8% ≈ 12 ρ i (a is the minor radius and ρ i the ion gyroradius), where it shows that turbulence near the X-point is hardly affected although it is still suppressed inside the island. Furthermore, the influence of different island sizes on turbulence transport level is also discussed.

Funder

Sichuan Science and Technology Program

Scientific Discovery through Advanced Computing (SciDAC) program

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3