Dependence of the boundary heat flux width on core and edge profiles in Alcator C-Mod

Author:

Ballinger S.B.ORCID,Brunner D.ORCID,Hubbard A.E.,Hughes J.W.ORCID,Kuang A.Q.ORCID,LaBombard B.ORCID,Terry J.L.ORCID,White A.E.

Abstract

Abstract This work presents new evidence that the heat flux width, λ q , in the Alcator C-Mod tokamak scales with the edge electron pressure, as observed in the ASDEX Upgrade (AUG) tokamak (Silvagni et al 2020 Plasma Phys. Control. Fusion 62 045015), but the scaling with volume-averaged pressure, p ¯ , from the plasma stored energy, found by Brunner et al (2018 Nucl. Fusion 58 094002), is a better predictor of λ q in Alcator C-Mod than the edge electron pressure. These previous studies, which find that λ q decreases with increasing plasma pressure, imply that a high performance core at high pressure will lead to challenging heat and particle exhaust due to very small λ q . This concern has led to our significant enlargement of the C-Mod database with the electron density, temperature, and pressure profile data from the Thomson scattering and electron cyclotron emission diagnostics. Using the C-Mod database augmented with new profile data, we find that λ q decreases with increasing edge electron pressure as λ q p e , 95 0.26 , similar to results from AUG, and showing the strength of cross-machine comparisons. We also find that λ q p e , c o r e 0.56 , consistent with the original finding from C-Mod that the heat flux width scales as p ¯ 0.48 (Brunner et al 2018 Nucl. Fusion 58 094002). The scalings of λ q with separatrix pressure and gradient scale length are found to match the AUG results qualitatively. The C-Mod scalings with edge plasma quantities have more scatter than the p ¯ scaling, and, importantly, show different trends for H-modes relative to L- and I-mode. Investigating the source of this discrepancy presents an opportunity for further study that may improve our ability to predict the heat flux width in different confinement scenarios in the pursuit of optimizing core-edge performance in future reactors.

Funder

US Department of Energy

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MANTA: a negative-triangularity NASEM-compliant fusion pilot plant;Plasma Physics and Controlled Fusion;2024-08-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3