Impurity mode induced turbulent particle transport and its temperature screening effect

Author:

Han M.K.ORCID,Zhong W.L.,Dong J.Q.,Wang Z.X.,Zou X.L.,Horton W.,Shen Y.ORCID,Sun A.P.,Wang J.L.ORCID,Gao J.M.,Feng B.B.,Chen C.Y.,Xiao G.L.,Shi Z.B.,Yu D.L.,Ji X.Q.,Dong C.F.,Fang K.R.,Wang L.F.,Xiao Y.,Xu M.,Duan X.R.

Abstract

Abstract Turbulent transport of impurity ions with hollow density profiles (HDPs), which are widely observed in magnetically confined plasmas and desirable for fusion reactor, is self-consistently investigated. A full gyrokinetic description is employed for main and impurity ions. Instead of conventional ion temperature gradient (ITG, including impurity ITG) and trapped electron modes (TEMs), impurity modes (IMs), driven by impurity ion density gradient opposite to that of electrons, are considered. The impurity ion flux induced by IMs is shown to be approximately one order of magnitude higher than that induced by TEMs when both kinds of modes coexist. Main ITG and electron temperature gradient (ETG) are found to reduce influx of impurity ions significantly, resembling temperature screening effect of neoclassical transport of impurity ions. The simulation results such as peaking factor of the HDPs and the effects of main ITG are found in coincidence with the evidence observed in argon injection experiment on HL-2A tokamak. Thus, the IM turbulence is demonstrated to be a plausible mechanism for the transport of impurity ions with HDPs. A strong main ITG, ETG, and a low electron density gradient are expected to be beneficial for sustainment of HDPs of impurity ions and reduction of impurity accumulation in core plasma.

Funder

National Key R&D Program of China

National Magnetic Confinement Fusion Energy Research Program

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3