Modelling and experiment to stabilize disruptive tearing modes in the ITER baseline scenario in DIII-D

Author:

Turco F.ORCID,Luce T.C.,Boyes W.ORCID,Hanson J.M.ORCID,Hyatt A.W.

Abstract

Abstract The achievement of high gain, stationary conditions in a tokamak scenario aimed at producing fusion energy in the ITER Project is crucial to the demonstration that this form of energy can be used in future reactors to provide cheap and clean energy globally. Disruptions are a challenge for the fusion energy field, in particular for the ‘ITER Baseline Scenario’ (IBS), as reproduced in the DIII-D tokamak. This work shows that a solution has been found for the m= 2/n = 1 tearing modes that have consistently caused disruptions in the IBS: stable operation down to zero input torque was achieved by modifying the current density profile at the beginning of the pressure flattop and the ELM character later in the discharges, guided by previous results showing that the most likely cause of these instabilities is the current density profile. The coupling between sawteeth, n>2 modes and the 2/1 TMs is shown to not be statistically significant, nor the leading origin for the evolution towards instability. Ideal and resistive MHD modeling provide positive verification that a steeper ‘well’ in the region of the q = 2 rational surface leads to worse ideal stability, higher tearing index Δ’ and lower threshold Δ’c for resistive instabilities, consistent with the experimental results. This provides confidence that the methods used in this work can be extrapolated to other devices and applied to avoid disruptions in ITER and pulsed fusion devices worldwide.

Funder

Basic Energy Sciences

Publisher

IOP Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3