Density and temperature profiles after low-Z and high-Z shattered pellet injections on DIII-D

Author:

Lvovskiy A.ORCID,Matsuyama A.ORCID,O’Gorman T.,Shiraki D.,Herfindal J.L.ORCID,Hollmann E.M.ORCID,Marini C.ORCID,Boivin R.,Eidietis N.W.ORCID,Lehnen M.ORCID

Abstract

Abstract In this work we utilize the recently upgraded Thomson scattering diagnostic to resolve density and temperature plasma profiles after pure deuterium and mixed neon/deuterium shattered pellet injections (SPIs) on DIII-D. This allows us to study individual components of the staggered scheme proposed for disruption mitigation on ITER, consisting of a low-Z material SPI followed by a delayed high-Z SPI. Obtained spatio-temporal density profiles exhibit very different dynamics after dominantly neon and pure deuterium SPIs. The neon SPI causes a fast radiative plasma collapse in a few milliseconds and results in almost flat density profile once the impurity mixes with the plasma during and after the thermal quench (TQ). The deuterium SPI leads to a disruption delayed by ten and more milliseconds, but very limited core fueling can be observed before the disruption. Even during and after the TQ, the edge deuterium density significantly exceeds the core density. 1D transport modeling suggests that this poor core fueling can be explained by strong outward grad-B-induced drift of the injected deuterium. Preliminary simulations show that larger pellet shards and greater injected quantity can be used to improve the penetration of the low-Z material into the core. These results call for optimization and further evaluation of the staggered SPI on ITER.

Funder

ITER Organization

Fusion Energy Sciences

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3