Particle orbit description of cyclotron-driven current-carrying energetic electrons in the EXL-50 spherical torus

Author:

Maekawa TakashiORCID,Peng Yueng-Kay MartinORCID,Liu Wenjun

Abstract

Abstract In EXL-50 plasma currents over 100 kA are non-inductively generated and maintained solely by electron cyclotron heating (ECH) power with an efficiency of ∼1 A W−1. These currents are carried by energetic electrons (EEs) in the energy range from several tens of keV up to several hundreds of keV which also account for almost all pressure in plasma. This EE component can be viewed as a large number collection of various periodic orbits of energetic particles. Based on this picture we have developed a method for particle orbit description of the EE component in a typical plasma at I P = 121 kA as analysis target. We use a fluid description as a bridge to describe successfully the EE component as a collection of various passing and trapped orbits in the approximation of monochromatic particle energy with good matching to the flux loop signals. The description has revealed characteristics of passing and trapped particles. Passing particles carry almost all toroidal current, while they account for only 20 % of total particle number of the EE component. While net current carried by trapped particles is a very small fraction, they account for a major fraction in number and carry a large positive current outside the last closed flux surface (LCFS) and a large negative current inside. As a result, trapped particles redistribute the current from inside of the LCFS to outside both radially and vertically, generating a large vertically elongated cross section in current as well as number density profiles. There is a ridge-like structure along the LCFS in the current density profile, with no such structure in the number density profile. The results suggest that forward passing particles are more advantageous in confinement than backward passing particles. This advantage increases with particle energy and contributes to the current generation observed in EXL-50 experiments.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3