Time-extended inductive tokamak discharges with differentially-tilted toroidal field coils

Author:

Gatto R.,Bombarda F.,Gabriellini S.,Murgo S.,Zotta V.K.ORCID

Abstract

Abstract The strong toroidal magnetic field required for plasma confinement in tokamaks is generated by a set of D-shaped coils lying equidistant on meridian planes toroidally located around the central axis of the device. A major technological challenge tied to this configuration is represented by the large Lorentz force acting on the coils and arising from the interaction of the coils’ currents with the magnetic field generated by the coil system itself. As this force is given by the cross product of the coil current and the magnetic field, various kinds of coil geometry modification have been proposed to alleviate this problem, from an inclination of the entire coil in order to maintain its planarity, to azimuthal tilting of all, or parts of, the coil profile. When the inner legs of the coils are tilted, apart from a reduction of the electromagnetic forces, a solenoid-like structure is formed which introduces additional magnetic flux linked to the plasma. Considering compact, high field devices, it is shown that when this additional flux is exploited, totally or in part, to ramp up the plasma current, the discharge time can be extended by a significant amount without resorting to noninductive current drive systems. Operational scenarios with inner-leg-tilted toroidal field coils are presented.

Funder

Sapienza Università di Roma

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3