Latest results of Eurofusion plasma-facing components research in the areas of power loading, material erosion and fuel retention

Author:

Reinhart M.ORCID,Brezinsek S.ORCID,Kirschner A.ORCID,Coenen J.W.ORCID,Schwarz-Selinger T.ORCID,Schmid K.,Hakola A.ORCID,van der Meiden H.ORCID,Dejarnac R.ORCID,Tsitrone E.,Doerner R.,Baldwin M.ORCID,Nishijima D.ORCID,Team WP PFC

Abstract

Abstract The interaction between the edge-plasma in a fusion reactor and the surrounding first-wall components is one of the main issues for the realisation of fusion energy power plants. The EUROfusion Work Package on plasma-facing components addresses the key areas of plasma-surface interaction in view of ITER and DEMO operation, which are mostly related to material erosion, surface damage and fuel retention. These aspects are both investigated experimentally (in tokamaks, linear plasma devices and lab experiments) and by modelling. Here, selective results regarding the main research topics are presented: in the area of tungsten (W) surface modifications, the interplay between W fuzz formation and W fuzz erosion depends strongly on the local plasma and surface conditions, as demonstrated by tokamak experiments. Complementary, experimental findings on the dependence of erosion on the surface structure in lab-scale experiments have led to the successful implementation of surface structure effects in numerical modelling. The qualification of ITER-like monoblocks at high fluences of up to 1031 D m−2 in linear plasma facilities has shown no visible damages at cold plasma conditions. However, experiments with simultaneous plasma and pulsed heat loading (edge-localized modes simulations) show that synergistic effects can lower the W damage thresholds. Additionally, fuel retention studies show that nitrogen as a plasma impurity increases the fuel retention in W, and that deuterium implanted in the surface of W is capable of stabilizing displacement damages caused by neutron damage. Finally, the implications of these results on ITER and DEMO operation are discussed and an outlook on follow-up experiments is given: the results indicate that there are possible impacts on the ITER divertor lifetime and tritium removal. Other areas like the divertor shaping and the erosion need additional investigations in the future to quantify the impact on ITER and DEMO operation.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Reference79 articles.

1. ITER research plan within the staged approach (level III-provisional version),2018

2. Required R&D in existing fusion facilities to support the ITER research plan;Loarte,2020

3. High-fluence and high-flux performance characteristics of the superconducting Magnum-PSI linear plasma facility

4. Linear Plasma Device PSI-2 for Plasma-Material Interaction Studies

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3