EMC3–EIRENE simulations of neon impurity seeding effects on heat flux distribution on CFETR

Author:

Dai S.Y.ORCID,Kong D.F.ORCID,Chan V.S.,Wang L.ORCID,Feng Y.ORCID,Wang D.Z.ORCID

Abstract

Abstract The numerical modelling of the heat flux distribution with neon impurity seeding on China fusion engineering test reactor has been performed by the three-dimensional (3D) edge transport code EMC3–EIRENE. The maximum heat flux on divertor targets is about 18 MW m−2 without impurity seeding under the input power of 200 MW entering into the scrape-off layer. In order to mitigate the heat loads below 10 MW m−2, neon impurity seeded at different poloidal positions has been investigated to understand the properties of impurity concentration and heat load distributions for a single toroidal injection location. The majority of the studied neon injections gives rise to a toroidally asymmetric profile of heat load deposition on the in- or out-board divertor targets. The heat loads cannot be reduced below 10 MW m−2 along the whole torus for a single toroidal injection location. In order to achieve the heat load mitigation (<10 MW m−2) along the entire torus, modelling of sole and simultaneous multi-toroidal neon injections near the in- and out-board strike points has been stimulated, which indicates that the simultaneous multi-toroidal neon injections show a better heat flux mitigation on both in- and out-board divertor targets. The maximum heat flux can be reduced below 7 MW m−2 on divertor targets for the studied scenarios of the simultaneous multi-toroidal neon injections.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3