Interplay between beam-driven chirping modes and plasma confinement transitions in spherical tokamak ST40

Author:

Bland J.ORCID,Varje J.,Gorelenkov N.N.,Gryaznevich M.P.,Sharapov S.E.ORCID,Wood J.,The ST40 Team

Abstract

Abstract Experiments on the high field spherical tokamak ST40 have led to the recent observation of interplay between beam-driven modes of sweeping frequency (chirping modes) and transitions to the enhanced global confinement regime (H-mode) and back to the low confinement regime (L-mode). The H-modes of plasma confinement are identified from decreased intensity of Dα signal and from clear distinctions in the edge gradients of the visible plasma boundary (observed as a sharp plasma edge in camera images). The beam-driven chirping modes, identified as ideal magnetohydrodynamics beta-induced Alfvén acoustic eigenmodes modes, are observed in Mirnov coil signals, interferometry, and soft x-ray diagnostics. A moderate amplitude ‘primer’ chirping mode usually precedes an H–L transition. This is followed by a ‘dominant’ chirping mode with higher amplitude during the L-mode. The L–H transition back to the improved confinement occurs on a longer time scale of tens of ms, consistent with the slowing down time scale of fast beam ions. A dramatic decrease in toroidal plasma rotation is systematically observed associated with chirping modes sweeping down to zero frequency. Resonance maps built for the beam-driven chirping modes with the ASCOT (accelerated simulation of charged particle orbits in torodoial devices) code show that the resonant beam ions have orbits near the trapped-passing boundary. The ASCOT modelling assesses how losses of the resonant fast ions caused by the chirping modes with high enough amplitude modify the torque, potentially affecting the plasma rotation.

Funder

Engineering and Physical Sciences Research Council

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Reference15 articles.

1. Chapter 5: physics of energetic ions;Nucl. Fusion,1999

2. Regime of improved confinement and high beta in neutral-beam-heated divertor discharges of the ASDEX tokamak;Wagner;Phys. Rev. Lett.,1982

3. H-mode power threshold studies on MAST;Andrew;Plasma,2019

4. A quarter-century of H-mode studies;Wagner;Plasma Phys. Control. Fusion,2007

5. H-mode dithering phase studies on ST40;Andrew;Phil. Trans. A

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3