Evaluation of the functional acceptability of the ITER vacuum vessel

Author:

Moon HokyuORCID,Park Soo-Hyeon,Kim Hyun-Soo,Kim Beom SeokORCID

Abstract

Abstract The International Thermonuclear Experimental Reactor (ITER) vacuum vessel (VV) is one of the critical components of the ITER tokamak fusion reactor. The first sector of the ITER VV was delivered to ITER Organization in 2020, and it is ready to assemble into the tokamak system. After manufacturing the ITER VV, an evaluation should ensure that the components are designed and manufactured to meet the functional requirements, such as vacuum leak tightness and structural integrity. The factory acceptance test (FAT) is essential for confirming acceptance in engineering and manufacturing. This paper introduces the engineering process and technical method of the FAT, which is applied explicitly to the first-of-a-kind ITER VV. We establish a visual inspection, pre-pumping assessment, pressure test, helium (vacuum) leak test, and final dimensional inspection for the FAT. The visual inspection revealed no blockages in the cooling channels of the double walls. The pre-pumping assessment conducted to check the vacuum level and residual gas condition, concluded that the inside of the VV was flawless and thus met the leak test requirements of 1 × 10−8 Pa m3 s−1. We confirmed no leakage or deformation through the pressure test under reduced pressure. The helium leak test demonstrated engineering soundness with leak tightness of 6.08 × 10−9 Pa m3 s−1, which is more stringent than the allowable limit. Furthermore, three-dimensional metrology was utilized to determine the as-built dimensions of the manufactured sector. Due to unavoidable weld deformation and tight tolerances, the as-built result does not perfectly meet the assigned tolerance level. Nevertheless, it can be considered as advanced information for assembly with in-vessel components and other sectors. Based on the conformance and suitability of the suggested FAT for the first ITER VV sector, we will determine the acceptability of the upcoming VV sectors, which will be manufactured and delivered by Korea shortly.

Funder

National Research Foundation

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3