Quantifying electron cyclotron power deposition broadening in DIII-D and the potential consequences for the ITER EC system

Author:

Slief J.H.ORCID,van Kampen R.J.R.ORCID,Brookman M.W.ORCID,van Dijk J.ORCID,Westerhof E.ORCID,van Berkel M.ORCID

Abstract

Abstract The injection of electron cyclotron (EC) waves fulfills a number of important tasks in nuclear fusion devices for which detailed knowledge of the spatial power deposition profile is critical. This deposition profile is commonly determined using forward models such as beam or ray tracing. Recent numerical and experimental studies have shown that small-angle scattering of the EC beam as it passes through the turbulent plasma edge can cause significant broadening of the effective deposition profile, leading to considerable underestimation of the deposition width by forward methods. However, traditional inverse methods to determine the deposition profile from measurements overestimate the deposition profile width due to transport broadening. In this work, we implement three novel methods to resolve the EC power deposition profile from measurements that counteract transport broadening by simultaneously resolving transport and power deposition. We validate their assumptions and compare the results from these methods to the traditional break-in-slope method as well as to the TORAY ray-tracing code in a set of DIII-D discharges spanning five different confinement modes. We show that the four different inverse methods, novel and established, paint a consistent picture of deposition broadening. Specifically, we show that the measured power deposition profile is between 1.6 and 3.6 times wider than the TORAY profiles. Moreover, we show the considerable consequences that this level of broadening can have for ITER.

Funder

U.S. Department of Energy

EUROfusion

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3