Tungsten boride shields in a spherical tokamak fusion power plant

Author:

Windsor Colin G.,Astbury Jack O.,Davidson James J.,McFadzean Charles J.R.,Morgan J. Guy,Wilson Christopher L.,Humphry-Baker Samuel A.

Abstract

Abstract The favourable properties of tungsten borides for shielding the central high temperature superconductor (HTS) core of a spherical tokamak fusion power plant are modelled using the MCNP code. The objectives are to minimize the power deposition into the cooled HTS core, and to keep HTS radiation damage to acceptable levels by limiting the neutron and gamma fluxes. The shield materials compared are W2B, WB, W2B5 and WB4 along with a reactively sintered boride B0.329C0.074Cr0.024Fe0.274W0.299, monolithic W and WC. Five shield thicknesses between 253 and 670 mm were considered, corresponding to plasma major radii between 1400 and 2200 mm. W2B5 gave the most favourable results with a factor of ∼10 or greater reduction in neutron flux and gamma energy deposition as compared to monolithic W. These results are compared with layered water-cooled shields, giving the result that the monolithic shields, with moderating boron, gave comparable neutron flux and power deposition, and (in the case of W2B5) even better performance. Good performance without water-coolant has advantages from a reactor safety perspective due to the risks associated with radio-activation of oxygen. 10B isotope concentrations between 0% and 100% are considered for the boride shields. The naturally occurring 20% fraction gave much lower energy depositions than the 0% fraction, but the improvement largely saturated beyond 40%. Thermophysical properties of the candidate materials are discussed, in particular the thermal strain. To our knowledge, the performance of W2B5 is unrivalled by other monolithic shielding materials. This is partly as its trigonal crystal structure gives it higher atomic density compared with other borides. It is also suggested that its high performance depends on it having just high enough 10B content to maintain a constant neutron energy spectrum across the shield.

Funder

Tokamak Energy

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3