Comparison of the influence of 2D and 3D geometry of the main chamber on plasma parameters in the SOL of ASDEX Upgrade

Author:

Bock L.ORCID,Brida D.ORCID,Faitsch M.ORCID,Schmid K.,Lunt T.ORCID,the ASDEX Upgrade Team

Abstract

Abstract In this paper the influence of toroidally asymmetric wall features on plasma solutions for ASDEX Upgrade is investigated by using the 3D scrape-off-layer simulation code EMC3-EIRENE. A comparison of simulation results in a 2D case with a toroidally symmetric first wall and divertor and a 3D case that differs from the 2D setup by including the 3D structure of the poloidal rib-limiters on the low field side of ASDEX Upgrade, highlights notable differences in the main chamber neutral particle distributions, ionisation sources and plasma flow patterns. Both neutral particle distribution and ionisation sources extend poloidally further upwards at the outer mid-plane in the 3D case and the plasma flow is globally influenced by the 3D wall features. Both simulations are conducted with identical input parameters to isolate the influence of wall geometry from other factors. By analysing the transport of neutrals from different poloidal locations it was possible to explain the observed discrepancies by different transport paths for recycled neutrals from the divertor region, only accessible in the 3D version of the wall geometry. Together with observed differences in fall-off lengths for plasma flow and electron temperature at the outer mid-plane, presented results are of key importance for interpreting global impurity migration experiments.

Funder

H2020 Euratom

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3