Overview on the management of radioactive waste from fusion facilities: ITER, demonstration machines and power plants

Author:

Gonzalez de Vicente Sehila M.ORCID,Smith Nicholas A.,El-Guebaly Laila,Ciattaglia Sergio,Di Pace LuigiORCID,Gilbert MarkORCID,Mandoki Robert,Rosanvallon Sandrine,Someya Youji,Tobita Kenji,Torcy David

Abstract

Abstract In the absence of official standards and guidelines for nuclear fusion plants, fusion designers adopted, as far as possible, well-established standards for fission-based nuclear power plants (NPPs). This often implies interpretation and/or extrapolation, due to differences in structures, systems and components, materials, safety mitigation systems, risks, etc. This approach could result in the consideration of overconservative measures that might lead to an increase in cost and complexity with limited or negligible improvements. One important topic is the generation of radioactive waste in fusion power plants. Fusion waste is significantly different to fission NPP waste, i.e. the quantity of fusion waste is much larger. However, it mostly comprises low-level waste (LLW) and intermediate level waste (ILW). Notably, the waste does not contain many long-lived isotopes, mainly tritium and other activation isotopes but no-transuranic elements. An important benefit of fusion employing reduced-activation materials is the lower decay heat removal and rapid radioactivity decay overall. The dominant fusion wastes are primarily composed of structural materials, such as different types of steel, including reduced activation ferritic martensitic steels, such as EUROFER97 and F82H, AISI 316L, bainitic, and JK2LB. The relevant long-lived radioisotopes come from alloying elements, such as niobium, molybdenum, nickel, carbon, nitrogen, copper and aluminum and also from uncontrolled impurities (of the same elements, but also, e.g. of potassium and cobalt). After irradiation, these isotopes might preclude disposal in LLW repositories. Fusion power should be able to avoid creating high-level waste, while the volume of fusion ILW and LLW will be significant, both in terms of pure volume and volume per unit of electricity produced. Thus, efforts to recycle and clear are essential to support fusion deployment, reclaim resources (through less ore mining) and minimize the radwaste burden for future generations.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

Reference89 articles.

1. Nuclear assessment to support ARIES power plants and next step facilities: emerging challenges and lessons learned;El-Guebaly;Fusion Sci. Technol.,2018

2. History and evolution of fusion power plant studies: past, present, and future prospects;El-Guebaly;Int. J. Energy Environ. Econ.,2010

3. Classification of radioactive waste,2009

4. Waste implications from minor impurities in European demo materials;Gilbert;Nucl. Fusion,2019

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3