First SOLPS-ITER predictions of the impact of cross-field drifts on divertor and scrape-off layer conditions in double-null configuration of STEP

Author:

Karhunen J.,Henderson S.S.ORCID,Järvinen A.ORCID,Moulton D.,Newton S.,Osawa R.T.

Abstract

Abstract Introduction of cross-field drifts in SOLPS-ITER simulations of connected double-null plasmas in STEP with the ion B × B drift towards the upper divertors was found to enhance the detachment of the inner divertors with decreased target densities and ion and heat fluxes, while simultaneously complicating the access to detachment in the outer lower divertor by increasing the target temperature and heat loads to levels above the engineering limits. The B × B drift was observed to significantly affect the radial heat transport between the core and the scrape-off layer (SOL), altering the poloidal temperature and pressure profiles and, consequently, the poloidal conductive and convective heat transport in the SOL. As a result, up-down asymmetries of 52:48 and 58:42 biased towards the outer lower and upper inner divertors, respectively, were observed to arise in the unmitigated power entering the divertor regions, breaking the up-down symmetry seen in simulations without the drift terms and contradicting with earlier experimental observations on the low-field side. Moreover, the upstream electron density was found to decrease noticeably in the core and separatrix regions following the activation of the drifts due to an increased share of the neutrals arriving from D2 injections near the upper and lower X-points ionizing already in the private flux regions.

Publisher

IOP Publishing

Reference22 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3