Design of an optimized load-resilient conjugate T for the ICRH system in the LHD using a novel hybrid circuit/3DLHDAP code and experimental results

Author:

Du D.ORCID,Saito K.,Kwak J.G.,Seki T.,Kasahara H.ORCID,Seki R.,Nomura G.,Yang Q.X.,Zhou H.,Hu S.X.,Huang Z.W.,Gong X.Y.,Gao Z.K.,Xiang D.,Kanda M.

Abstract

Abstract It is crucial to correctly predict the S-matrix with plasma and set the optimal impedance matching device in the ion cyclotron resonance heating (ICRH) antenna system design. In this paper, a hybrid circuit/3DLHDAP code to verify the S-matrix measurements in the presence of plasma and optimize the load-resilient conjugate-T circuit for Large Helical Device (LHD) ICRH antennas has been developed and benchmarked. The variation of S-matrices for handshake form (HAS) and field-aligned-impedance-transforming (FAIT) antenna systems with density, magnetic field and coupling distance during heating obtained by the code’s simulations agrees with that of with the LHD ICRH experiments. The mutual coupling of toroidally aligned HAS antennas is larger than that of poloidally aligned FAIT antennas over a wide range of densities. When the density and coupling distance increase, under a magnetic field on the magnetic axis of 2.75 T and 1.0 T, within a certain density change range, at the minimum voltage position with vacuum injection, the change rule of the antennas’ Sa_minV_ 11 and Sa_minV_ 22 with density is opposite to that with coupling distance, which means that under certain conditions, adjusting the coupling distance may make up for the S-parameters changes caused by plasma density variation, keeping the minimum voltage position fixed, and may make impedance matching easier to achieve during long-pulse operation. Based on obtaining the S parameters, conjugate-T circuits for the HAS and FAIT antennas are designed with the hybrid circuit/3DLHDAP code, which can keep the reflection coefficients low without controlling impedance matching device over a wide range of plasma parameters region. The related results in this paper may provide some guidance for the high-power long-pulse operation of the ICRH antenna system on the fusion device.

Funder

National magnetic confinement fusion energy development research project

Natural Science Foundation of Hunan Province

the LHD budget from National Institute Fusion Science.

Government Sponsored Study Abroad Program of Chinese Scholarship Council

Key projects of Hunan Provincial Department of Education

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3